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ABSTRACT
The method of vanishing artificial viscosity is used to obtain smooth,

larqe;data travellingrwave solutions to a class of conservation laws with

semidefinite viscosity. The onesdimensional Navier-Stokes equations serve as

an illustrating example. / '
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ON TRAVELLING-WAVE SOLUTIONS TO SYSTEMS OF CONSERVATION
LAWS WITH SINGULAR VISCOSITY

Howard Prue' and Richard Sandets'*
§1. INTRODUCTION
In this paper we discuss sufficient conditions for the existence of
smooth, large-data travelling-wave solutions to certain systems of nonlinear,
semidefinite parabolic partial differential equations. Specifically, we

consider conservation laws which have the form:

Bu, 3E(w) 3 Bu
(1.1 ot My ax (atw ax) ’

where u, f£(u) ¢ R® and where A(u) ¢ e may be singular. Moreover, we
include in this study problems for which £f(u) and A(u) are not globally
defined. To illustrate our ideas we apply the abstract results of this paper
to the one-dimensional compressible Navier-Stokes equations; see [6] for a

classical treatment of this problem. In the Navier-Stokes equations the left

hand side of (1.1) is given by:

[o] m
u= |m ' £(u) = mz/p +P v
e m(e + P)/p

where p, m and e are respectively a fluids density, momentum and total

energy. The variable P represents the fluids pressure and is given by:
P= (y = 1)(e - m2/2p) '

for an ideal, polytropic gas. Yy > 1 is a thermodynamic constant. The

viscosity matrix A(u) is given by:

g 0 0 0
m 1
" _m 1 0
02 P
Aym2 A e Ay m A1
S -F)Fe-5 0-2)30 =5
L v p v p v p v
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i where again A and Cc, are thermodynamic constants, and i is a positive

N
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constant often referred to as the coefficient of viscosity.

L

L,

A travelling-wave solution is a particular solution of (1.1) which has
the form:

(1.2) u{x,t) = w(x - st) ,

lim w(x - st) = uy o
x¥rt®

for some scalar constant s. Inserting the Ansatz (1.2) into (1.1) and

Cal ROy 3 A A

integrating we find that w(T) satisfies the ordinary differential equations
dw
(1.3) =s(w = u_) + f(w) - £(u_) = A(w) 3T’

where here T represents the travelling-wave variable x - st. (In later

1Yo a g 0 p

a

K sections we use t to represent the travelling-wave variable.) For a
trajectory of (1.3) to satisfy (1.2) it is easily seen that given u_ we must

have that u, and s satisfy the Rankine-Hugoniot condition:

O A

(1.4) =s{u, = u)) + f(u,) = f(u_) =0 .
(From time to time we shall write s as s(u_,u,) to indicate its explicit

dependence on the states u. and u,.) Given that u_, u, and s satisfy

the Rankine-Hugoniot condition, it is a natural question to ask whether there
J is a smooth function w(T) that satisfies (1.2), (1.3). To answer this
. qguestion when the viscosity matrix A(u) 1is singular our approach is to
perturb A(u) to a nonsingular matrix Ae(u) (with A%u) = a(uw)) and
establish the existence of a family {w°)} of solutions to the modified

X problems. The behavior of we as € tends to zero is then investigated.

For the Navier-Stokes equations the modified problems are obtained by

introducing the artificial viscosity

(1.5) e 2 [aw) 2= (1ogl 0! ) - n’ )]
¥ Ix x e - m2/29 292(e - m2/20)

(with a(u) > 0 to be determined), into the conservation of mass equation.
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This paper is divided into five sections. In Section 2 we list a number
of preliminary'assumptions. Section 3 is devoted to the existence of
travelling-wave solutions to (1.1) when the viscosity matrix A(u) is
nonsingular. Ff!ngular viscosity problems are treated in Section 4. Finally,

in Section 5 we apply our results to the compressible Navier-Stokes equations.

Acknowledgement. We wish to thank Professor J. V. Ralston of UCLA in

particular for suggesting the proof of Theorem 1 as well as for his other

invaluable comments.

§2. SOME PRELIMINARY ASSUMPTIONS

The global structure of the Hugoniot locus (that is the set of states
u, that satisfy (1.4) for some fixed wu_. and variable s € R) has
fundamental importance to our analysis. To begin let R denote some open
connected subset of R®. The set R, which is usually determined from the
physics of (1.1), should be regarded as the set of physically admissible
states. We first require that
(2.1) f(u) € c3(R) ,
and we assume that the eigenvalues of Df(u) are real, distinct and are
arranged in increasing order:

(2.2) A1(u) < kz(u) € eee ¢ An(u) .

In addition to this, we require that for each Ak(u) and all u € R either

(GNL) VoA (@) ¢ f(u) #£0,
or
(LD) VA () ¢ r(u) 20,

is satisfied, where r (u) 4is the right eigenvector of Df(u) corresponding
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to Ak(u); see [8). Fields that satisfy (GNL) are often referred to as §§Sg‘
"genuinely nonlinear™ fields, and fields that satisfy (LD) are referred to as t;:

"linearly degenerate”. ' !

For u_ € R it is well known that (2.2) implies that the Hugoniot locus TSE;E

is locally the union of n connected one-dimensional manifolds. Following ‘ ;f;%

Mock ([11] we denote the Hugoniot locus about u_ as
n
(2.3) Tu)) = U T (u),
k=1
where the index k is chosen such that the tangent vector of Pk(u_) at

u. is tk(u_)- We require that the local structure of T(u_) is valid in

the large and that R is chosen so that for any u_ € R we have

(2.4) T(u_) CR .

Next we impose a global "entropy condition” on those fields which satisfy t{t;:
‘.:;-"\
(GNL), see [8]. sSpecifically, if w, € I, (u ) where A, (u) satisfies (GNL), b
LA
and when Xk(u_) > Xk(u+), we require that -

(2.5) Adul) > s(u_,ul) > A (u),
Aeeqlug) > slu_jul) > A L (u),

where s(u_,u;,) is the "shock speed" determined by the Rankine-Hugoniot

condition. (2.5) is of course the celebrated Lax condition E.

é‘ Remark 2.1: For those Ak(u)'s that satisfy (GNL) one easily deduces that 2
. (2.5) partitions Fk(u_) into two disjoint branches separated by u_. On one
3 branch (2.5) is satisfied. (Throughout we shall denote this branch by if

r;(u_).) On the other branch (2.5) is satisfied with the roles of u_ and
u,; reversed.
Finally, we assume that f(u) admits a convex entropy function. A

convex entropy function, say E(u), is a scalar-valued function which
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satisfies:

(2.6a) E(u) € C3(R) ,
' (2.6b) . D2E(u) is positive definite on R,
(2.6c) Dzz(u)Df(u) is symmetric.

Given that n = 2 and (2.2) is satisfied, such a function often exists [9].

Frequently this is not always the case when n ?» 3. Since, as will be seen

below, the existence of E(u) is crucial for our analysis, we should mention

that numerous physical problems do indeed admit a convex entropy function [4].
We now state two lemmas without proof. Their proofs can easily be

obtained by adapting lemma 5 and Theorem 3 from Mock [11]).

Lemma 2.1. Suppose that all of the assumptions above (with the possible
exception of (2.6)) are satisfied. let wu, € Fk(u_), u, ¥ u_, where Xk(u)
satisfies (GNL). Then the function

H(u_,u,su) = =s{u_,u ) (u = u_) + (£(u) - £f(u)) ,
has no zeros in R other than u_. and u,. Moreover, given u_ and u,
and any open set 0 containing u_ and u,, there is a positive constant
clu_,u,,0) such that for any u € R\0

lH(u_,up5u)| 2 clus,uy,0) .

-
o
o

Lemma 2.2. Given that E(u) satisfies (2.6), there exists a smooth scalar-

e %

’
P

valued function F(u) such that

(Of (u) TVE() = VF(u) .
Moreover, if wu, (# u.) lies in a genuinely nonlinear field on which the
entropy condition (2.5) is satisfied (i.e. wu, € F;(u_)), then
s(u_,uy) (E(uy) = E(u_)) = (F(uy) = F(ul)) > 0 .
On the other hand, if u, lies in a linearly degenerate field the inequality

above becomes an equality.

-5=

- .ot - - ., -t e " . .~
D P e T S R e e T A e e L LT P et .
. . - - . ) - - - - - - - 0 - . . - = - i - N
R N A A A . BRADE P P A P AR R O e RS Y
W RS RV IV ST T T WY VR DRI U Sy Iy 5, % ) & S R I Y A W Y S YA S A PRI




m. PULI e S G SC e S A M G A LT il AR N R gt i N S P S UL S S L SNSRI A S A T AN A Sl i Mol s sme A g oed i oae b

We conclude this section by showing that the flux term £f(u) from the
Navier-Stokes equations satisfies all of the assumptions so far imposed.

Recall from Section 1 that the flux terms of the Navier-Stokes equations are

3 3 S PFEEECCAA ™ s WY ¢ «

given by:
m .
2
f(u) = m/p + P ’
m(e + P)/p

where P is the density of the fluid, m is the momentum and e is the
I total energy (kinetic plus internal enerqgy). The pressure term above is given
by:
p-(v-1)b-u%m59),

for an ideal, calorically perfect gas, where Y > 1 is a thermodynamic

L

constant. The eigenvalues of Df(u) are:

. (2.7) Ajw) =w/p = C, Ay(u) =/, Aj(u) =wp +cC,
. where C, the sound speed, is given by:

Furthermore, X1(u) and Xs(u) satisfies (GNL), while Az(u) satisfies

(m/p), = (m/p)_,

l (LD). The Hugoniot locus for this problem is readily computed to be [12]:
( -1
!?'+ = p_e
) (2.8) Tou) =/ o, =p_(B +8)/(1 +80)
2T 1-0""
(m/p), = (m/p)_ + C_ Ty -1 ° 1172’
. (1 + 86 )
) (
. Py = P_
s Fytu)) = p,=0p_"0
<
¢
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P, = PO

Tytu)) = P, = P_(1 +BO)/(B +8)

. 2t . 8.-1

where B = : : : and T = YZ; ! are constants and the parameter 6 1lies in
6 > 0. Moreover, in the 1 and 3 fields above the entropy condition (2.5) is
satisfied when 0 ¢ © ¢ 1; sgee Smoller's book [12] for a thorough development
of these facts.
We take for the set of physically admissible states the convex set
R={(p,m,e)T : p >0, P> 0},
and one easily finds that T(u_) C R for any u_ € R. It is furthermore well
known that the ideal, calorically perfect Navier-Stokes equations admit a
convex entropy function
E(u) = -p log (B/((Y=1)pV)) ,
see [(4]. Clearly E(u) € ca(R) and a lengthy calculation will verify that
E(u) above also satisfies (2.6b) and (2.6c) (4, 1].
We therefore have that the flux terms of the Navier-Stokes equations fit
completely into the framework we have so far developed. We should mention
however that not all of the hypotheses above are sacred (other than (2.6) that

is). We have chosen the route of simplicity over generality here since such

an interesting physical example is so easily accommodated.

§3. LARGE-DATA TRAVELLING-WAVE SOLUTIONS TO POSITIVE DEFINITE SYSTEMS

In this section we state sufficient hypotheses and outline the technigue
we use to establish the existence of large-data travelling-wave solutions to a
particular version of (1.1). The specific simplifying assumption we make

here, in addition to the assumptions of Section 2, is that the "effective"

-7=
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q diffusion matrix, D“EA, has positive definite symmetric part. Although the
Y

g- main result of this section is a generalization of previously known results
o~

.

(5, 2, 3, 11], the positivity assumption is unreasonable when considering

- .

(2
D

problems such as the compressible Navier-Stokes equations or other physical

s T& e 0V
#

Y

examples with singular viscosity matrices. Nevertheless our approach

motivates a systematic procedure for constructing reasonable artificial

P S
.

viscosity terms for which uniform estimates are obtained. With these

o ¢ 1
“.‘.’;

estimates the vanishing artificial viscosity method can be applied.

' Remark 3.1. The condition that D?EA have positive definite symmetric part
is equivalent to the condition that p2ga-? have positive definite symmetric
N part.

We use the method of continuation to obtain a large-data travelling-wave

- solution. A homotopy invariant is constructed which if equal to unity
& guarantees the existence of a travelling-wave. The problem is then smoothly
i deformed to a small-data (weak-wave) problem for which it is routinely seen
% (via an argument similar to Foy [5]) that the invariant is in fact unity. ;w -
J
F Before stating the main result of this section (Theorem 1) we outline our
method of proof.
Let F;(u_) denote the branch of the Hugoniot locus on which the entropy
condition (2.5) is satisfied, (of course we assume that Ak(u) satisfies
(GNL)). We suppose that u, lies on this branch and that u+(o) is the arc-
length parameterization along T;(u_) with u,(0) = u_. and wu,(L) = u,. Now

consider the variable wave strength version of (1.1) with its associated

travelling-wave equation:




(3.1) Aw) e, (0w,

Le"a ava 4 &l

dt
lim w(t) = u_, lim w(t) =u (o) ,
tP=c t++o
N where H(u_,u,(0)7u) is given by:

=s(u_,u (0))(u = u)) + £f(u) - f(u)) .
The scalar function
(3.2) A(u) = VE(u) « H(u_,u, (0);u)

+ s(u_,u (0))(E(u) = E(ul)) - (F(u) = Flu))) ,

will serve as a Lyapunov function. The fact that A(u) is indeed a Lyapunov -
function is evident by differentiating (3.2) along trajectories of (3.1),
: giving
. L AMw) = p2E(w)H( (@)w) « A” (wH( (a)1w)
2 3c Mw u_su, u_,u _(g)iw) .
(Recall from Lemma 2.2 that DfTVE = VF.) Since by assumption D%EA has

positive definite symmetric part, Lemma 2.1 implies that %E A(w(t)) > 0 for

all w(t) € R except for u_ and u+(0). Next we reparameterize t in

(3.1) so that

N (3.3) g—t Aw(t)) = 1 .

Away from u_ and u, (o) this is equivalent to multiplying the left hand

side of (3.1) by the positive function i:}i;
- ulw) = DzE(w)H(u_,u+(o);w) . A-1(w)H(u_,u+(o);w) 7
We wish to show that the unstable manifold of (3.1) near u_ can be
connected to the stable manifold near u,. With this in mind, consider the
region in state=-space given by:

(3.4) Mo =L_(e) NU_,

where

L_(e) = {ue R : Aw) =€}, (e>0),

U_ = unstable manifold of (3.1) near u_ .
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We now give:

Claim 1. For all 0 < o € L, M_ is homeomorphic to the sphere sk 4n a
small neighborhood of u_ provided that € > 0 is chosen sufficiently
small. (Note that throughout this section k represents the index of the
entropy condition satisfying branch of the Hugoniot curve on which u+(a)
lies.)

Before proving the claim we state a lemma from Mock [11].

lemma 3.1. ILet B and C be matrices and suppose that B has positive

definite real part, Re(B) = 1/2 (B + B*), and that C is nonsingular and
Hermitian. Then the form q(z) = z*Cz is positive definite on the
generalized eigenspace of B-1C corresponding to those eigenvalues with
positive real parts.
Proof of Claim 1: The proof follows from the assumptions of the previous
section and Lemma 3.1. For ¢ > 0 sufficiently small, L_(¢) is a manifold
of codimension 1. This is clear since the only critical values of A(u) are
A(u_) = 0 and A(u+(c)) >0 (see Lemma 2.2) and ¢ can be taken between
these two values. The unstable manifold of (3.1) is given locally by the
generalized eigenvectors of A-1(u_)DH(u_,u+(0):u_) which correspond to those
eigenvalues with positive real parts. Combining the facts that DZE(u_)
symmetrizes DH(u_,u+(c);u_) and D2EA has positive definite symmetric part,
it is easily shown that the number of eigenvalues of A-1(u_)DH(u_,u+(o);u_)
with positive real parts is egual to the number of positive eigenvalues of
DH(u_,u+(c);u_). Counting this number (that is, using the entropy condition
(2.5)) we conclude that dim(U_) = n - k + 1, and the count is independent
of 0 < o < L. Finally, using Lemma 3.1 with C = DZE(u_)DH(u_,u+(O);u_)
and B = DZE(u_)A(u_), we have that

0’Atu_) = D?E(u_)DH(u_,u, (0)su_) ,

-10-
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Claim 2. For all 0 <o <L, M, is homeomorphic to the sphere
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is positive definite when acting on the tangent space of (_ near wu_.
Thus, M_ is locally homeomorphic to the sphere sk,

What follows below are the key points of this section. Let ot(x)
represent the flow of the system
(3.5) u{w)a(w) —— = H(u_,u_(0)sw) ,

w(0) = x ,

and notice that Py (when defined) maps M_ into the codimension 1 manifold:
0

(3.6) L (e) = {u€eR : A(u) = Atu (o)) - e}

when tg = A(u (o)) - 2¢ and where again we have taken ¢ > 0 small. Next
define
(3.7) M, =1L, (c) ﬁ$+
where
S, = stable manifold of (3.1) near u, (o) .
We now give another simple claim:
sk~ in a
neighborhood of u+(o) where as before ¢ > 0 is taken sufficiently small.

The homotopy invariant alluded to above is the modulo-2 intersection

number of P (M_) and M, defined inside the ambient space L+(£): see
0

[7]. As per Claim 1 and Claim 2, Py (M_) and M, have complimentary
0
dimension, that is dim(vto(M_)) + dim(My) = dim(L_(e)) , provided that
LI M_ L+(e) is a smooth map. Unfortunately, for general large-data
0

problems, this need not be the case. The next lemma addresses this matter in

the small.

Lemma 3.2. The flow wt(M_), 0< ¢t < 1Y remains in a compact subset

of R for all 0 < g < Y provided that % is taken sufficiently small.

=-11=
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i Proof of Lemma 3.2: Observe that
; Au (0)) = s(u_,u,(0))(E(u, (o)) = E(u_)) = (F(u,(0)) - F(u))) .
y For weak and entropy satisfying shocks (i.e. u+(o) € F;(u_) with ¢ small)
E Lax has shown that
: Au (o)) = 0(c®) > 0.
! Computing %; A(w(t(s))), where s is the .rc length parameterization along
| a trajectory of (3.1), we obtain
' 4 p2E(w)H(u_,u, (0)sw) + A” (w)H(u_,u,(0)sw)
5 7y Alw) = =3 ’
N |2 (w)H(u_,u (0)sw)]
i and it is easily seen that for any w € B(u_,§) with 6 > 0 small, we have
2 (3.8) g-; Atw) > const(1 = &) |H(u_,u,(a)sw)] .
The positive constant above does not depend on §. Expanding Mock's proof of
Lemma 2.1 one determines that
i (3.9) |H(u_,u+(o);w)| » const §o ,
i for w ¢ R but outside B(u_,§) U B(u,(0),8), again for § >0 and o > 0

sufficiently small. We next show that w(t) cannot leave
B(u_,p) U B(u,(0),p) for an appropriate choice of p.
For any 0 <t <t <ty we have from (3.3) that

t
(3.10) AMu () > %A(w)dt ,
t

- ~

and we choose t to be the first time that w(t) B(u_,8) U B(u*(o),G). To
reach a contradiction suppose that w(t) leaves

B(u_,§ + o) U B(u+(c),6 + 0). Reparameterizing the right hand side of (3.10)
in terms of arc length and using (3.8) and (3.9) we must have that

A(u+(o)) > const(1 = 8§ - 0)8o » 0 .

-fd=




Wl A NAR RASA L GEAGI i i A i e e SAC e mie A R A A M oA AR AR e aCa e a

R SN SR G SN Ol 0 AN oA ) o gt e aag aIE" S oBE 2 abe ofe o LML TQ
L.
DA

o -':N‘:
'-‘.'f,:h"q
LA AT My

B
d

However, recalling that A(u+(0)) = 0(63), the inequality above would imply
that

0(o) > const(1 - § ~ 0)8§ .
Setting 6§ = x0 with «x < 1/(209), we reach an obvious contradj.tion for

small ¢ and large k. This completes the proof since we could take o

smaller if necessary to force B(u_,(x + 1)o) U B(u,(0),(x + 1)o) to be
contained in R.
Remark 3.2. With the special assumption that R = R® along with the
assumptions that Dzz(u)h'1(u) has uniformly positive definite symmetric part
and A" Y(u) is uniformly bounded, one can show that the conclusion of the
previous lemma remains valid independent of the size of o.

The proof of the next proposition follows the proof of Theorem 1.

Proposition 1. Suppose that the preliminary assumptions of Section 2 are

satisfied. Furthermore, assume that D2EA has positive definite symmetric
part in R, u_ € R and u+(0) € F;(u_), the entropy condition satisfying
branch of Pk(u_). Then 12(°t0(u-)'n+)' the modulo-2 intersection number,
equals one provided that 0 < 0 < 6, with o0, sufficiently small.

Having additional knowledge concerning vt(M_) allows us to state:
Theorem 1. Suppose that the assumptions of Proposition 1 are satisfied along
with the key hypothesis:

(A) ot(u_) for 0 € t € t5 remains in a compact subset
of R for all 0 < o < L.
Then (1.1) admits a smooth travelling-wave solution for any u+(0) with
0 <o € L.
Proof of Theorem 1: By hypothesis A, Claim 1 and Claim 2, together with the
usual theorems from ordinary differential equations, we have that Py (M)

0

and M, are compact submanifolds of L _(¢). Moreover, ¢, and M, are
Y
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smoothly dependent on 0 < 0 < L, and they have complementary dimensions with
respect to L+(e). Therefore, the modulo-2 intersection number,
Iz(oto(u_),n+), is well defined and remains constant throughout the

entire o deformation. Proposition 1 establishes the fact that

12(¢to(n_),n+) = 1 for small o

0’ thus Iz(oto(u_),n+) = 1 for any

On € 0 < L. So we conclude that there exists at least one trajectory of
3.1), (with ¢ = L), that connects the unstable manifold near u_ to the
stable manifold near u,(L). This is the desired result.

Proof of Proposition 1: First observe that (3.5) can be written as:
aw

2 =
(3.11) u(w)DE(w)A(w) ax VA(w) .

Applying the results of this section it is clear that we can deform

DzE(w)A(w) to the identity without changing the modulo-2 intersection number,
provided 0 < 0 < 0, and o0, is sufficiently small. Now let {r }l=1
represent the orthonormal set of eigenvectors to the symmetric matrix

(3.12) D’E(u_)DH(u_,u,(0)su_) = D2Au_) |

arranged so that its eigenvalues X, are increasing with §. Consider the

2

orthogonal change of coordinates w - u_ = Z VeTy and the scalar function

c 4 2 3
AMv) == § X (v,)  +=(v,) ,
2L k
=1
where b is given by

; 3°Au_) o
(r ) (r ) (r —— . . 5
a, B8,y kB k Yy du ausau :. f
A(v) contains the important local information of A(w). A straightforward e

calculation shows that the eigenvalues of (3.12) are given by:

- (31)2 + 0(c) for £ <k

~ 1 2 2 -
xz 3 (Bk) o + 0{(c”) for £ =k
+ (81)2 + 0(a) for 2 > k ,
-14~
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and b can be rewritten as
b= - (ak)2 + 0(0) ,
where

2 . T, 2
(8,) [, tu) tkl(rkb E(u_)r,) .

{Again, recall that the index k refers to the fact that u+(o) € F;(u_)-)

Defining v' = (v1,...,vk_1,0,vk+1,...,vn)T, we have from Taylor'’s Theorem

that

%;k (Aw) = 251 = ocfw||v'] + [v'[2 + |v|3) ,
and

T (wm =A%) = ot)v]?) for LK.

Ve

Rotate coordinates, (w - u_ = Rv), and consider the final deformation:
dv
pin:v) o VVA(mv) '

where A(n:v) = AS(v) + n(A(w) = AS(v)). Following the outline previously
laid down in this section (Claim 1, Claim 2 and lemma 3.2) along with the
estimates above it is not difficult to show that Iz(vto(M_),M+) is well
defined and remains constant for all n ¢ [0,1] provided that ¢ > 0 is
fixed and is sufficiently small. Setting n = 0 one easily verifies that

¢, (M) intersects M, exactly once and that this intersection is indeed

0
transversal. Therefore, the modulo-2 intersection number is 1 for n = 0
from which by homotopy invariance we conclude the same for n = 1.

Remark 3.3. We have intentionally excluded the case when u, lies in a

linear degenerate field. 1In this case (3.1) can have a smooth solution only

for trivial data u+(o) = u_. This is seen by first recalling that

p’E(u)H(u_,u, (o) 1u) = TA(w) ,
-15-
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1 and then multiplying (3.1) by g%— DZE(w)r doing so we obtain:
3 aw' 2 & a
X 0 < —dT— D E(W)A(W) ?t- = d—t A(W) .

Lemma 2.2 states that when u _(0) is in a linear degenerate field

A(u+(o)) = A(u_) = 0, therefore the equation above allows us to draw only
one conclusion, that is w(t) = const.
: We end this section by giving sufficient conditions under which
hypothesis A of Theorem 1 is satisfied. We state these conditions here as a
theorem since it is this technique we apply in the following sections.
Theorem 2. Iet G C R® represent the set of states that can be reached by

any smooth path x(t) with x(0) ¢ M_, %? A(x(t)) > 0 and

e € A(x(t)) < A(u+) - €. Suppose first that
(a) GCR.
Second, assume that there exists a smooth, nondecreasing function g(r), with

lim g(r) = +~, which satisfies
r-boo

(b) |mi|n teTuwn2e(wawel V2 > gt (|u)
£]=1

for all u e G. Then ¢t(M_) remains in a compact subset of R for any
0 <t < A(u) - 2¢.
+
Proof: Clearly by assumption (a) we have that wt(M_) remains in a closed
subset of R. To see that Qt(M_) remains bounded, let m_ ¢ M_ and observe

that
ta 2 t a 2
[ot|wit) ) = gtlm_ )12 = [[ Fz etwimipar]” < ¢ [ o= gtlwnr] | ar .
0 0

Computing the derivative in the right hand side above and using assumption (Db)
we arrive at

t T
d 2 aw
(gt]wie)]) - g(Im_])12 < ¢ (f) S wwin’E(wIa(w) S dv .

-16-
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Using (3.11) we f£find that the integrand above is equal to %; A(w), and
recall from (3.3) that this quantity is normalized to 1. Therefore we
conclude that

gllwte)]) < gtlm_|) + ¢t < gtlm_|) + Au,) = 2¢ ,

which implies the desired result.

$§4. SINGULAR VISCOSITY MATRICES

We carry over all of the hypotheses of Section 2 to investigate problem
(1.1) in the case when the viscosity matrix A is singular. We furthermore
assume the set R of physically admissible states is convex. The convexity
of R along with the assumption that Dzz(u) is positive definite on R
allows us to introduce the globally defined change of coordinates:

(4. 1) v = VE(u) .
In the new coordinates, the travelling-wave differential equation (3.1)
becomes:

dv
(4.2) B(v) T - H(u_,u,rulv)) ,

lim v(t) = vy = VE(ut) '
tot-

where B(v) = A(u(v))(th(u(v)))". Throughout, B(v) is assumed to have
positive semi~definite symmetric part. In the coordinate system given by

(4.1), the right hand side of (4.2) is given by:
H(u_,ugu(v)) = Y Alu(v)) ,

(recall that A(u) is defined in equation (3.2)). To simplify the notation
below we define A(V) by:

Kv) = Au(v)) .
Remark 4.1. We choose here to work in the coordinate system (4.1) because it

is this coordinate system we use in the application of the next section.

-17=




We now make some further simplifying assumptions. Suppose that the null-

.
g space of the matrix B(v) is spanned by p independent constant vectors.
’,
< This allows us to make a simple rotation (which below we take to be the
) identify) so that B(v) may be partitioned as:
s
N 0 0
-, (4.4) B(v) = '
a B(v)  b(v)
_ where b(v) is a (n - p) X (n - p) positive matrix and b(v) is an
>
< (n - p) x p matrix. To further simplify our presentation we assume that
o b(v) = 0, and we note that the case when b(v) § 0 requires only a slight
modification of our arguments below.
N To show that (4.2) admits a solution we modify the diffusion matrix (4.4)
i: by introducing an artificial viscosity term. Specifically, we consider the
family of modified problems:
- €, €, dv® - €
:: B (v) a-t— VVA(V )
: (4.5)
lim ve(t) = vt ’
-: t+to
‘4
- where
' ca(v)I ]
. ¢ ( P
B (4.6) B (v) = ’
~ (] b(v)
- and where a(v) > 0 is to be determined. Below we show with reasonable

hypothesis that the modified problem (4.5) has a solution for any € > 0, and

we show that the family &} satisfies uniform estimates that allows for

€>0

the passage to the vanishing artificial viscosity limit.
Before giving the main results of this section we introduce some further
notation. Partition a vector v ¢ R® as v = (v1,v2)T, where v, € RrP

and v, € R"P. For a smooth function A : R® + R, let Av represent a
1




vector function with elements 3%— A, 1< i< p, and let Av represent a

i 2
vector function with elements 5%— A, p+ 1< i<, The notation Av v
i 2 11
]
shall represent a (p x p) matrix with elements 33— A, 1< 4,3¢<p,
: 1773 2
and Av2v1 shall represent an (n - p) X p matrix with elements 3;:5;;’A:

p+t+1<i<n, 1<3j<p. Finally, for any square matrix M(v) € " ve
define the scalar-valued function QM(V) by
Qui{v) = min ETM(V)E .
Eeﬂm
g |=1
We are now ready to address the question of the existence of solutions to
the modified problem (4.5). The particular list of assumptions given below
are chosen for convenience only. In the next section we show they are easily
applied to the compressible Navier=Stokes equations.
Lemma 4.1. As throughout, suppose that all of the basic preliminary
assumptions of Section 2 are satisfied. In particular, assume that u_ ¢ R
and u, € F;(u_). where F;(u_) is a branch of the Hugoniot locus on which
the entropy condition (2.5) is satisfied. Moreover, assume the following:
(a) G' C VE(R) ,

where here G' C R® 1is the set of states that can be reached by any smooth

a4

path y(t) with y(0) = v_, at

Ky(t)) » 0 ana 0 < A(y(t)) < Alu,).
Second, assume that Qp(v) > 0 and a(v) of the modified viscosity matrix
(4.6) is constructed so as to satisfy

(b) cq € a(v)Qb_1(v) <cy.,

for some positive constants ¢; and c; any every Vv € VE(R). Finally,

assume that for all v ¢ 6' we have

(e) 19, (V12 _ (v1Y% 5 gritelv, 12 + v, 1B VP,
b

for some smooth nondecreasing function g(r) with 1lim g(r) = +». Then for
) S

'''''
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any € > 0, the modified travelling-wave equation (4.5) has a solution, and
denoting this solution by ve(t), we have the estimate:

2)1/2

g((elv:(t)|2 + |v§(t)| ) € glmax(e, ) |v_|) + Alu,) .

Proof: Observe that for any § ¢ K' we have that

p(u(v)ETBE(VIE > [H(u_,u+zu)|2[£-Q _1(v)|31|2 +0 _1(v)|32|2]
a b

12 ~ 12
x 19, (M[E, %+ o (MIE,ITT ,
where |ﬁ1|2 + |92|2 = 1 and where we use the notation & = (/€ 51.52)T-

Using condition (b) one easily shows that the right hand side above dominates

!H(u_,u+;u)|2min(E%;, 1)min(c1,Qb(v)Qb_1(V))|E|2 ’

and condition (c) gives us that this dominates
~ ~ 2
c[IH(u_,u+ru)|g'(IV')'E'] '
for some positive constant c. (Note that above we have assumed that

g'(I;l) < Cqr of course we lose nothing by doing this.) Recalling that

Lemma 2.1 gives us that |H(u_,u+;u)| ?» c(u_,u,,0) for u outside any open
set containing u_. and u,, we set § = EEi and mimic the proof of
Theorem 2. This completes the proof of the lemma.

The estimate of Lemma 4.1 establishes that |v;(t)| is bounded
independent of €; (provided that condition (c) does not depend on €.) With

an additional hypothesis we can show that |vi(t)| remains bounded

independent of € and therefore obtain a uniform maximum-norm estimate.

Lemma 4.2. In addition to the hypotheses of Lemma 4.1, assume the following:

Suppose there exists a compact set @ C R® of the form:
Q={v:v1enl:}ﬂ{v: |v2|<R}ﬂ§'
where R is taken large enough so that

g(R) > g(max(e,1)|v_|) + A(u+) ’
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Qf C WP contains (vq)_. and (v4),, and ﬂ? is such that for any
v* ¢ G' with v; € 39?, |v5| ¢ R we have that

Kv (v*) e n

1 91

. is of one sign. (n R € PP is the outward unit normal to n?.) Then v°(t)
l g
‘ remains trapped in 1 for all € > 0.

Proof: By the estimate of the previous lemma we have that

12)%/2) ¢ g(R) ana this implies |v;(t)| < R. Using

i attelver])? + IvSie)
the differential equations (4.5) and the assumption of this lemma we have that

Q? is either forward or backward invariant with respect to vﬁ(t)- Given

€ > 0 suppose that vf(t) ' n? for some t. If this were the case then we

could not have 1lim ve(t) = v*. But this violates the result of Lemma 4.1
t+i®
and therefore establishes the result of the present lemma.

v T -

The next lemma implies the result of Lemma 4.2 as well as giving a
€

dav
uniform maximum-norm estimate for Frat

. T E S T

: Lemma 4.3. In addition to the hypotheses of Lemma 4.1, suppose we could find

a smooth function h : R*™P + ®P such that the surface

- ~p
21 {(h(vz),vz) TV, € Py ng .

contains v_ and v, and is such that Kv1(v) =0, (i.e.
Hy(u_,u,su(v)) = 0), for every v ¢ 21. Furthermore, suppose that for every r:{[ﬂ
v e 21, the (p x p) matrix

[(=8(u_,uy)T + DECu(VIN O3 EVIN™T 4 164, 3<p ,

t (=R (v)) S

' vy
| is either positive or negative definite. Then vE(t) satisfies the uniform SN
estimates: ON

BN

* € AR
(a) lv la <K, . ﬂ\fgf
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& dv

b, —_—

™ (b) Fral LR R
:} for some positive constants K1 and Kz.

Proof: We first prove (a). The idea is to show that vE(t) stays in a small

.

4

neighborhood of I for 0 < e < € with €0 sufficiently small. Set

Ef = {v : d(v,£1) < &8},

with 6§ small but fixed and define

1

LR ot

ol

Ke

Iy

= {v: |A (V)] < a(v)Ke} .
V4
Defining R as in the previous lemma choose Ke sufficiently small so that a

AR Y

AL

connected branch of
Ke -
I, N{v: |v,] <R} NG

is contained in Zf. Next, let n represent the outward unit normal of

-
.
r.

Ke

2

K —
» and compute that along 8228 N {v : |v2| < R} NG*, n 1is given by
- = PTi=1 /= - - - \T
|A_ (A ,0)7| "«(A A LA A ) .
wiiv, VVe Ve YV Yy

Dotting (4.5) with n gives

av - Ty =1y
a T IA, (A 1'0’ | |Av,|
|Kv1| 1
T- S T—
x (& Av1v1£ —— + (b sz) Av2v1£] .

- - X -
where £ =A_ /| |. since along 3I € we have |k | = ake, and since the
vy 2 2 v,

hypotheses of the lemma gives us that Kv v is either positive or negative
11
we have that the bracketed term above can be made to have

definite near 21,

one sign. This is accomplished for all v ¢ 32§e N {v : |v2| <R} NG by

choosing K sufficiently large when € 1is sufficiently small. Following the

reagoning of the proof of Lemma 4.2 completes the proof of (a).

To prove (b) observe that

R ARSI
. : R “ ..' .' ." .o ...'
: ‘.' - '."_. .'," . '. ... '..

.
4. S
2l te a

d € 1 -
' v, (t)] =T |Av )| .
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Since vo(t) e 2'2“: N{v : |v,| <R} NG' we have lg; vi(t)| < X for all
sufficiently small € and all t. Combining this with the trivial inequality
|§_ ve(t)| < |b-1(v)x (v)|, completes the proof of (b).
atc 2 v,
We are now :eady to state and prove the main result of this section.

Theorem 3. Suppose that the assumptions of Lemma 4.1 and Lemma 4.3 are

X
satisfied. Then the partial differential equation (1.1) with singular ;f
viscosity has a smooth travelling-wave solution u(x - st) which is the limit -E
of a sequence of artificial viscosity approximations. : ‘jéi
Proof: From Lemma 4.1 we have a family of smooth solutions to (4.5%) which we éiii?

denote by {ve} Normalize these by translating t so that

£>0°
- € 1
RAvE(0)) = 3 acuy .

Moreover, from Lemma 4.3 and the Arzela-Ascolli Theorem we have a continuous
€

k
function v(t) and a subsequence Vv (t) guch that
x
vit) = lim v “(t) ,
ek+0

the convergence being uniform on compact t intervals. From the proof of

Lemma 4.3 we also have that

€

Hy(u_,u,ra(v(e))) = Um K (v (&) =0,
ek+0 1

and the usual bootstrap arguments from the theory of ordinary differential )

equations gives us that v,(t) is a smooth solution of

v ]

“
b(v) rre Hz(u_,u+;u(v)) .
Since by aasumption Kv v is nonsingular for v € 21, we have from the
11

implicit function theorem that v, (t) is smooth as well. Therefore, v(t)

LR % BN AN
»

1,
'.
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is a smooth solution of

80(v) g% = H(u_,uysui{v)) .

what remains to be shown is that lim v(t) = Ve With this in mind
trgeo
compute that

(4.7) %t. Rvie)) = K (vie)) - b"(v(t))Kv (v(t)) .
2 2

Therefore, A(v(t)) is a nondecreasing function, and because it is the limit
£
- k
of A(v "(t)), which is bounded between 0 and A(u ), we find that

0 < K(v(t)) < Auy) .
Bounded monotonic sequences have limits, therefore
lim A(v(t)) = A

tr3e
exist. Now define v(n)(t) by

t ’

viM(e) = vt + ),
and again appealing to the Arzela-Ascoli Theorem, we have a continuous
function v*(t) and a subsequence ng + ®, such that

nk)

(
v*(t) = lim v (t) ,

nk-no

which also gives us that

A+ = lim A(v(t + nk)) = A(v*(t)) .

>
nk°°

Integrating (4.7) from t =n, to t =1+ n,, we have after changing

variables

(nk) (nk)

AMv (1)) - AMv (0))

1 (n ) (n ) (n )
1 e bt X eni v K oenae .
V2 Vo
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letting n, + *» implies that
0 =% (ve(t)) « b (v*(e))E, (v¥(t)) ,
v v
2 2
and therefore
sz (v*(t)) = Hy(u_,u,su(v*(t))) =0 .
Combining this with the fact that Hj(u_,u,su(v*(t))) = 0, we have that
u(v*(t)) is one of the two critical points of H(u_,u,ju). However because of
the normalization, that is A(v(0)) > %-A(u+), we must have that
v*(t) = v,. The same argument can be applied equally well to any subsequence
of v(®)(t) = v(t + n) which shows that lim v(t) = V4 Similarly,
teeo

lim v(t) = v_ and so the proof of the theorem is complete.
t =~

§5. APPLICATION TO THE NAVIER-STOKES EQUATIONS

In this section we apply Theorem 3 to the compressible Navier-Stokes
equations. From our analysis we conclude that these equations admit a smooth
travelling-wave which is the limit of certain artificial viscosity

approximations. Throughout this section we shall assume that

P
u_ =] m JeR = {(p,m,e)T :p>0, P> 0},

and we assume that u, € P;(u_) where k = 1 or k = 3 (the genuinely
nonlinear fields); see equation (2.8). Moreover, because the Navier-Stokes
equations are invariant under a Galilean change of coordinates, we lose no
generality by taking the shock speed s equal to zero.

We begin by explicitly transforming the travelling-wave equations for

Navier-Stokes into the coordinate system given by the gradient of its entropy

N
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V1=

v2

V3

where

function

3E

ap

Therefore

E(u) = - p log(P/((Y-1)Dy)) .

Computing some derivatives we find that

=log(2pe = mz) - 20e/(2pe - mz) + (y + 1)(log(p) + 1) + log 2 ,

2pm/(2pe - mz) (=(Y - 1) %a ’

-2p2/(2pe - n?) (= =ty - 1)-%) .

p(v) = (-v

Inverting these equations we obtain

1
-1 1 2
3)Y exp[Y—_—T (V1 + Vz/('2V3) - Y)] '

m = p(v)vz/(-v3) ’

e = p(v)(1 + v§/(-zv3))/(~v3) .

2]
-
f

rh
w
]

=m= D(v)vé/(-v3) P

2 2
+P=p(v)(1 -y + v2/v3)/v3 ’

ola

1 2
% (e + P) = p(v)vz(Y/v3 -3 (vz/v3) )/v3 ’

and it is easily verified that

£(u) - £(u_) = va(v) '

Kv) = (v = Vo(vIv,/(-v;) = £(u_) + v + const ,

and where the constant is chosen so that 'K(v_) = 0, Moreover, a rather

lengthy calculation will reveal that
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B(v) = A(u(v))(D2E(u(v)))~?

r -
0 0 0
-y 0 =1/v v /v2 .
3 2" 3
2 3 A 2
L0 v2/v3 -v2/v3 + 3; 1/v3J

(The viscosity matrix A(u) for Navier=-Stokes is given in Section 1.) Note
that in the v-coordinate system the region of physically admissible states is
VE(R) = {v : vy < 0}.

The result of this section is obtained by establishing the hypotheses of
Theorem 3. To this end we first establish hypothesis (a) of Lemma 4.1. That
is we show that the set G' {8 contained in a closed subset of VE(R).
(Recall that G' 4{s the set of all states that can be reached by any smooth
path y(t) with y(0) = v_, %E K(y(t)) » 0 and which satisfies
0 < Ky(t)) < I(v+).) We accomplish this by constructing what we call a

*A-wall”. Specifically, we show that when k = 1, m_ > 0 (The case
k = 3, m_ < 0 being similar) there exists a closed set of the form
W= {v : v, 2a >0, vy € B < 0} ,
with v_ € w°, vs € 3 such that for any v* ¢ BW\{V+} we have

K(ve) > K(v+). Having this wall (U implies that G' C VE(R).

Remark S.1. The entropy condition (2.5) implies that the momentum component

of u, (i.e. m.) for the Navier~Stokes 1 or 3 zero-speed-wave can never be
zero. See (2.7) and compare it with the entropy condition (2.5).
To see that (! can be made to have the properties described above, set
a= (vy)y »
and

B = -4ty = M/(E,u )/m)? .
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(From the remark above (f ;_,(u_)/m_)2 is positive and bounded.) By checking

the sign of -jr K(v*) for
3

v* ¢ {V H %K(v) =0, Vo = (Vz)...p Vi3 < 0} )
1

it is clear that K(v*) > A(v,) when v* # v,; see Figure 1. Moreover, it

is easy to check that Fa,— X(v*) > 0 for

N 2
i e tes T% Rvy = o, V2 2 (V)4 s V3 == (f4:u ;/;))2} ¢
2"V s

so we have A(v*) > A(v+) here as well; again see Figure 1. Finally,

% K(v*) is positive (resp. negative) if v* ¢ 3W with v* 1lying above
1

(resp. below) the surface {v H -5‘3,— K(v) = o, vy > 0, vg < 0}. 80 we conclude
1

.. that K(v*) > A(V+) for all v* ¢ 8W\{v+}.

Figure 1

Next we establish hypotheses (b) and (c) of Lemma 4.1. Define the

viscosity submatrix
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2
-1/v3 vz/v3
blv) = u ’

2 3 A 02
v/V3 vyvy * c, 1/v4

and construct the artificial viscosity ca(v) (= Bﬁ 1(V)) so tha: for all
[}

ve {v:v, <0}

3
cq € a(v)Qb_1(v) <cy .,

where c4 and c, are some positive constants. Note that for a symmetric

matrix S, Qg 1is given by the smallest eigenvalue of S.

Remark S.2. This particular artificial viscosity has the form (1.5) when

written in conserved variables.

An elementary calculation will show that

v2
2 A 2
(|V3| +-C:)'v3| + V2
Qb(v)Qb_1(v) > 5 .

v
2 . A 2
(T;,;r+g;+ |V3')

and for any v €  this dominates

2
c

2 ’
(1 + fv,| + v,

for some positive constant c. With this estimate we can satisfy hypothesis
(c) of Lemma 4.1 by choosing g(r) = c log(1 + r).

To conclude this section we show that the Navier=-Stokes equations satisfy
the assumptions of Lemma 4.3. Solving the equation 5%: K(v) = 0 for vy we

find that
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P 2 -

A Vo (-v3)7-1

Q vy = hivy,vy) = = 7:3;;7 +y + (Y = Dlog( ~, m),
¥

and clearly this is smooth in W. Finally for v = (h(v,y,v3),vy,v3), that is

- 9
? for v such that 3;: K(v) = 0, we have that ’
A 2 m
a K(v) =
: B a———T ¢
'. av? ‘Y 1)

S and as Remark 5.1 points out, m can never be zero for a zero speed 1 or 3
wave. Therefore we have established all of the hypotheses of Theorem 3 and

hence conclude the result of Theorem 3 for the Navier-Stokes equations.
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